ICLR 2026 | 在Moltbook之外,上交大联合上海AI Lab模拟了AI原⽣社交的「真实暗⾯」
ICLR 2026 | 在Moltbook之外,上交大联合上海AI Lab模拟了AI原⽣社交的「真实暗⾯」本⽂的主要作者来⾃上海交通⼤学和上海⼈⼯智能实验室,核⼼贡献者包括任麒冰、郑志杰、郭嘉轩,指导⽼师为⻢利庄⽼师和邵婧⽼师,研究⽅向为安全可控⼤模型和智能体。 最近,Moltbook 的爆⽕与随后的迅速
本⽂的主要作者来⾃上海交通⼤学和上海⼈⼯智能实验室,核⼼贡献者包括任麒冰、郑志杰、郭嘉轩,指导⽼师为⻢利庄⽼师和邵婧⽼师,研究⽅向为安全可控⼤模型和智能体。 最近,Moltbook 的爆⽕与随后的迅速
来自上海交通大学、清华大学、微软研究院、麻省理工学院(MIT)、上海 AI Lab、小红书、阿里巴巴、港科大(广州)等机构的研究团队,系统梳理了近年来大语言模型在数据准备流程中的角色变化,试图回答一个业界关心的问题:LLM 能否成为下一代数据管道的「智能语义中枢」,彻底重构数据准备的范式?
上海AI Lab联合多家机构开源的Yume1.5,针对这一核心难题提出了时空信道联合建模(TSCM),在长视频生成中实现了近似恒定计算成本的全局记忆访问。
组织调整后的模型答卷,将对腾讯至关重要。《智能涌现》从多名独立信源处获悉,近日,出于个人发展原因,原腾讯 AI Lab副主任俞栋将从腾讯离职。截至发稿前,腾讯官方暂未回复。
近日,上海人工智能实验室的研究团队提出了一种全新的后训练范式——RePro(Rectifying Process-level Reward)。这篇论文将推理的过程视为模型内部状态的优化过程,从而对如何重塑大模型的CoT提供了一个全新视角:
AI不应是巨头游戏,模型也不是越大越聪明。近日,「Transformer八子」中的Ashish Vaswani和Parmar共同推出了一个8B的开源小模型,剑指Scaling Law软肋,为轻量化、开放式AI探索了新方向。
随着大型语言模型在各类任务中展现出卓越的生成与推理能力,如何将模型输出精确地追溯到其内部计算过程,已成为 AI 可解释性研究的重要方向。然而,现有方法往往计算代价高昂、难以揭示中间层的信息流动;同时,不同层面的归因(如 token、模型组件或表示子空间)通常依赖各自独立的特定方法,缺乏统一且高效的分析框架。
2024年,加州大学圣地亚哥分校「Hao AI Lab」提出了DistServe的解耦推理理念,短短一年多时间,迅速从实验室概念成长为行业标准,被NVIDIA、vLLM等主流大模型推理框架采用,预示着AI正迈向「模块化智能」的新时代。
本文来自于香港中文大学 MMLab 和 vivo AI Lab,其中论文第一作者肖涵,主要研究方向为多模态大模型和智能体学习,合作作者王国志,研究方向为多模态大模型和 Agent 强化学习。项目 le
近日,上海人工智能实验室针对该难题提出全新范式 SDAR (Synergistic Diffusion-AutoRegression)。该方法通过「训练-推理解耦」的巧妙设计,无缝融合了 AR 模型的高性能与扩散模型的并行推理优势,能以极低成本将任意 AR 模型「改造」为并行解码模型。